
Insight: A Multi-Modal Diagnostic Pipeline using LLMs 
for Ocular Surface Disease Diagnosis

Chun-Hsiao Yeh1,5, Jiayun Wang1,2, Andrew D. Graham1, Andrea J. Liu1, 
Bo Tan1, Yubei Chen3, Yi Ma4,5, and Meng C. Lin1,5

1CRC, UC Berkeley 2Caltech       3UC Davis      4HKU 5UC Berkeley

👩⚕

Our Mul'-Modal Diagnos'c Pipeline (MDPipe) Current Challenges & Our Contributions

LLM-Based Clinical Report SummarizerShortcomings in MLLMs? Apply Visual Translator!

Method / 
Disease

DE MGD Blepharitis
Acc. SN SP F1 Acc. SN SP F1 Acc. SN SP F1

General LLMs without fine-tuning 
Llama 49.8 93.2 14.7 60.5 40.6 88.7 17.1 55.9 44.7 28.5 55.3 30.8
GPT-3.5 57.7 86.7 32.7 64.9 48.6 95.5 25.6 60.6 46.2 31.3 61.9 33.8
Llama2-7B 63.9 88.2 38.6 66.6 52.7 83.2 23.3 62.3 47.4 31.8 59.3 34.4
GPT-4 70.7 77.1 66.3 67.7 65.2 65.7 76.8 65.5 58.2 39.3 72.9 48.8

LLMs fine-tuned on medical domain data
Med-Alpaca 62.5 87.3 33.5 70.3 53.4 84.7 28.2 61.9 54.9 53.8 55.8 49.7
PMC-LLaMA 73.3 73.1 77.7 75.8 63.6 70.7 61.5 64.7 60.5 50.3 74.4 56.8
MDpipe-7B (ours) 86.9 89.3 84.3 87.8 76.1 67.2 81.7 69.2 71.2 56.3 79.7 63.8
Mdpipe-13B (ours) 89.5 88.2 91.0 89.9 74.4 61.4 82.9 65.7 73.1 58.7 80.1 65.1

Comparison (General & Medical Domain LLMs) Clinician Preference Study - MDPipe vs GPT-4

Comparison (Training Variables within MDPipe)

Pretrain
+ Training Variables in MDPipe Diagnosis Acc. (%)

Metadata Morphology MG-Express. Real Diag. DE MGD Bleph.

LLaMA2

✅ ❌ ❌ ❌ 83.5 65.5 69.4
✅ ✅ ❌ ❌ 84.1 74.4 68.8
✅ ✅ ✅ ❌ 85.8 75.6 70.1
✅ ✅ ✅ ✅ 86.9 76.1 71.2

Comparative evaluation and clinician study between MDPipe and GPT-4. 
Five clinicians were masked as to which model produced each output, and then 
asked to read and rate the two models' output on a scale from 1 (poor) to 5 (best) 
regarding 1) clinical accuracy, 2) diagnostic completeness, 3) diagnostic rationale, and 4) 
the model's robustness to handle ambiguous or incomplete patient data.
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(a) Limitations of current MLLMs (LLaVA, GPT..) in processing visual data, (b) Our visual 
translator V is designed to interpret visual data I by converting them into quantifiable MG 
morphology data.

We employed an LLM-based summarizer to generate Q&A clinical reports (via GPT-4) 
to contextualize insights from both the non-narrative clinical metadata and MG 
morphology to enhance LLMs' learning capability.

Comparison between general and medical domain-tuned LLMs for diagnosing ocular 
diseases: Dry Eye (DE), Meibomian Gland Dysfunction (MGD), and Blepharitis. 
Evaluation criteria include accuracy, sensitivity (SN), specificity (SP), and F1 score.

Dataset (3513 entries): (Train / Test) set has (1903 / 198) metadata-only & (1257 / 155) 
image+metadata instances. There are a total of 878 subjects.
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Motivation: 
Given clinical data and imaging, can we build a diagnostic pipeline using LLMs for 
ocular surface disease (e.g., DE, MGD, …) diagnosis with clinically relevant rationales?

Challenge 1: Can a model process meibography images with the same level of 
attention and detail as a human clinician?

        à Visual Translator

Challenge 2: Can the model make a precise and accurate diagnosis and provide 
clinically sound rationales for diagnoses.

        à LLM-based Clinical Report Summarizer

        à Clinical Data from real-life clinician diagnoses

The impact of various training variables within our MDPipe on ocular disease diagnosis. It 
is observed that MG morphology is essential in MGD diagnosis.
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